A multiple criteria active learning method for support vector regression
نویسندگان
چکیده
This paper presents a novel active learning method developed in the framework of ε-insensitive support vector regression (SVR) for the solution of regression problems with small size initial training data. The proposed active learning method selects iteratively the most informative as well as representative unlabeled samples to be included in the training set by jointly evaluating three criteria: (i) relevancy, (ii) diversity, and (iii) density of samples. All three criteria are implemented according to the SVR properties and are applied in two clustering-based consecutive steps. In the first step, a novel measure to select the most relevant samples that have high probability to be located either outside or on the boundary of the ε-tube of SVR is defined. To this end, initially a clustering method is applied to all unlabeled samples together with the training samples that are inside the ε-tube (those that are not support vectors, i.e., non-SVs); then the clusters with non-SVs are eliminated. The unlabeled samples in the remaining clusters are considered as the most relevant patterns. In the second step, a novel measure to select diverse samples among the relevant patterns from the high density regions in the feature space is defined to better model the SVR learning function. To this end, initially clusters with the highest density of samples are chosen to identify the highest density regions in the feature space. Then, the sample from each selected cluster that is associated with the portion of feature space having the highest density (i.e., the most representative of the underlying distribution of samples contained in the related cluster) is selected to be included in the training set. In this way diverse samples taken from high density regions are efficiently identified. Experimental results obtained on four different data sets show the robustness of the proposed technique particularly when a small-size initial training set are available. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Stock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملA New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملMammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease
Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملPrediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014